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This work presents a study of the formal structure of the theory of finite-strain polar
elasticity and thermoelasticity with special attention to the construction of canonical
balance laws that concern the whole system under study and not only each separate
degree of freedom. These are the balance of energy and so-called pseudo-momentum
whose (i) local form plays an essential role in the theory of smooth material inhomo-
geneities (so-called gradient materials), (ii) global form—integrated over a material
region—finds a direct application in the corresponding theory of fracture (expression
of the energy-release rate and path-independent integrals) and (iii) associated jump
equations provide a fruitful application in the theory of the progress of coherent
phase-transition fronts obeying the second law of thermodynamics by relating the
localized surface entropy and hot heat source to the kinetics of the front and help-
ing one devise a criterion of progress. All corresponding expressions are obtained
either in quasi-statics or in full dynamics. The untouched problems are those of com-
pleteness of the set of conservations laws, the much expected ‘geometrization’ of the
theory, and the generalization to incoherent phase-transition fronts for which dislo-
cations and disclinations will play a foremost role. Hints for the solution of these
three problems are given.

Keywords: polar elasticity; inhomogeneities; microstructure; fracture;
phase transition; conservation laws
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1368 G. A. Maugin

1. Introduction

Recent works dealing with the general problem of fracture and the propagation
of phase-transition fronts in deformable materials (in a synthetic form, see Mau-
gin (1993, 1995)) have shown that: (i) the cases of (fully non-dissipative) elasticity
and of the thermoelasticity of conductors—dissipative case including only thermal
dissipation—play a paradigmatic role in the uncovery of the formal structure of a
theory of continua and establishing the most striking general results of the theories
of fracture and of progress of phase-transition fronts; (ii) this, contrary to a too much
superficial common feeling, is facilitated by considering first the exact case of finite
deformations and fields; (iii) the latter argument is of necessity developed by clearly
distinguishing between the actual configuration of a body and a reference configu-
ration; and (iv) one must also distinguish between field equations—there exists one
such equation (say, the Euler–Lagrange equation for the non-dissipative case) for
each independent field in the theory—and canonical balance laws, which pertain to
the whole physical system and reflect the invariance—or lack of invariance—of the
system under fundamental transformations. Examples of such canonical balance laws
are the energy balance and the much less known and exploited balance of canonical
momentum—what we called balance of ‘pseudo-momentum’. Just like the former
that is a scalar equation, the balance of pseudo-momentum or, for materially inho-
mogeneous bodies—as we like to say—the unbalance of pseudo-momentum, is that
material covectorial equation whose global form and constituents, material forces,
are the fundamental ingredients of the theory of driving forces on material defects,
macroscopic cracks being considered as such defects in their own right. In so far as
the propagation of phase-transition fronts is concerned, it is the jump relation asso-
ciated with the lack of strict conservation of pseudo-momentum which does govern
the progress of the front. Note in passing that energy and pseudo-momentum are the
time-like and space-like components of a unique four-dimensional geometric object.
The extraordinary power of these canonical considerations on the material manifold
is best exemplified in the case where the material body exhibits several degress of
freedom, the additional degrees of freedom relating either to an internal mechanical
structure (such as in liquid crystals) or to an internal electromagnetic structure (such
as in elastic ferromagnets).

The nature of material forces versus physical ones in liquid crystals described by
the Frank–Leslie–Ericksen theory (so-called director theory) was thus carefully exam-
ined in Maugin & Trimarco (1995a), while the application to elastic ferromagnets
with a magnetic (spin) substructure was dealt with in details by Maugin (1992) for
soliton propagation and in Fomethe & Maugin (1996, 1997, 1998) for the study of
driving forces on cracks and phase-transition fronts. The problem of the application
of such concepts to polar elastic bodies then is a natural step forward, especially inas-
much as questions of fracture and phase-transition fronts will necessary appear in
such materials, e.g. polar crystals such as KNO3 or NaNO2 (see Askar 1986; Pouget
& Maugin 1989). Pioneering works on a specific aspect of this, without connection
with the present general approach, are due to Jaric (1978) and Vukobrat (1989),
who formally examined the question of the formulation of conservation laws and
path-independent J integrals in the linear elasticity of so-called micropolar media
(Eringen 1968). However, in the light of remarks formulated above, we should better
first consider the general framework of finite strains. Thus we shall base our con-
siderations on what appears to be, so far, the best formulation of finite strain polar
elasticity, the Kafadar–Eringen formulation of 1971—reviewed in Eringen & Kafadar

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


On the structure of the theory of polar elasticity 1369

(1976). This formulation is best suited for the following reasons. First, it does base
the energy considerations on local changes of objects and not the objects themselves.
By this we mean that, in so far as the microstructure is concerned, the energy is a
function of the orthogonal transformations of the microstructure and not of vector
fields (directors) representing directly the microstructure (for the foundations of the
director approach see Truesdell & Noll (1965) and Naghdi (1972)). This is a sound
physical description as directors themselves have no energetic features a priori (but
their gradients do). Second, it allows directly a material formulation in which time
and material coordinates enter automatically with their simply commuting deriva-
tives. Finally, it is that formulation which has best considered invariance matters by
introducing correctly the strain measures called the Cosserat and wryness tensors and
consequently affords the best available framework for studying the notions of mate-
rial uniformity (in the sense of W. Noll, C. C. Wang & M. Epstein), inhomogeneity
and material symmetry . The accompanying proof of inclusive results is paradoxical-
ly much simpler than in the linearized theory of small strains and small rotations! As
the inertial term attributed to the microstructure may sometimes create difficulties
which we do not consider in view of our applications, the following presentation will
be essentially confined to the case of quasi-statics, remarks concerning inertial terms
being given only for the sake of curiosity.

Following the logic transparent in the introduction given above, the main body of
the text is developed in the following way. Section 2 presents the main notation and
‘field equations’, while ‘conservation laws’ are formulated in two different ways in
§3, either by strict algebraic manipulations or through the application of Noether’s
theorem. The notions of driving force, path-independent integral and energy-release
rate useful in fracture studies are expanded in §4. Elements of full dynamics are
given in §5 with the introduction of ‘pseudo-momentum’ per se. Remarks on time
and length scales are given at that point. The case of thermoelasticity of conductors
is looked upon in §6. This helps one formulate the problem of the progress of phase-
transition fronts in §7. The approximation of small strains and small rotations in
§8 permits the confrontation with simple approaches. Section 9 is conclusive. The
intrinsic dyadic notation is used throughout, but many expressions are also given in
tensorial-index notation when a risk of confusion arises. Some intermediate proofs are
more easily carried in the latter for those readers not so familiar with manipulations
using the intrinsic notation.

2. Field equations

(a ) Elements of kinematics
Let x, with Cartesian components xk, k = 1, 2, 3, denote the actual placement

in physical Euclidean space E3 at time t of the material point X (referred to a
material basis GK , K = 1, 2, 3, on the material manifold M3). The point x belongs
to the actual configuration Kt, while X is referred to a reference configuration KR.
Assuming all functional behaviours sufficiently smooth for the moment, the motion
of X in E3 is described by the time-parametrized diffeomorphism χ(X, t) while its
regular inverse is noted χ−1(x, t). That is,

x = χ(X, t), X = χ−1(x, t), (2.1)
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1370 G. A. Maugin

with (T denoting transpose)

F :=
∂χ

∂X

∣∣∣∣
t

= (∇Rχ)T, J := detF > 0 always (2.2)

and

F−1 :=
∂χ−1

∂x

∣∣∣∣
t

= (∇Rχ
−1)T, F · F−1 = 1, F−1 · F = 1R, (2.3)

where 1 and 1R are unit dyadics in Kt and KR, respectively. The classical finite
Cauchy strain is defined by

C = FTF = CT, i.e. CKL = δijF
i
·KF

j
·L. (2.4)

Accordingly, the components of F−1 are denoted by (F−1)K·i . However, it should be
remarked that while E3 is neutral from the tensorial viewpoint (i.e. being Euclidean,
it does not distinguish between covariant and contravariant objects),M3 does make
that difference so that in general, in tensorial notation, the up or down place of upper
case Latin indices is important, while that of lower case Latin indices is irrelevant.
Hence (2.4) may also be written CKL = F i·KF

i
·L = F i·KFiL. The inverse of C, C−1,

has thus contravariant material components and, by transposition, FT should have
components (F )·iK . In parallel to (2.2) we can define the partial time derivative of χ
as being the physical velocity v:

v :=
∂χ(X, t)

∂t

∣∣∣∣
X

= χ̇. (2.5)

Correspondingly, we have the material velocity given intrinsically by

V :=
∂χ−1(x, t)

∂t

∣∣∣∣
x

= −F−1 · v, (2.6)

where the last relationship is checked by use of the chain rule of differentiation.
Let A(X, t) be a tensor-valued function of (X, t), of which we do not specify

the order, and f(A(X, t);X, t) be a scalar-valued function of A and an explicit
function of X and t. Then we note that the total material gradient and material-
time derivative of f are given by

∇Rf =
∂f

∂X
= tr

(
∂f

∂A
· (∇RA)T

)
+
(
∂f

∂X

)
expl

(2.7)

and

ḟ ≡ ∂f

∂t

∣∣∣∣
X

= tr
(
∂f

∂A
· ∂A
∂t

∣∣∣∣
X

)
+
(
∂f

∂t

)
expl

, (2.8)

where the explicit material gradient and partial time derivative are obviously taken
at fixed A and t, and fixed A and X, respectively. For functions f(X, t), material
gradient and material time derivative commute. For functions g(x, t), it is the ∇ gra-
dient and the partial time derivative at fixed x that commute. These commutations
greatly facilitate the subsequent manipulations.

Now equations (2.1) describe the classical motion of a material point, as the latter
is commonly viewed in classical continuum mechanics—this point has ‘no structure’.
In polar materials, also called Cosserat continua or oriented continua, one endowes
each material point X with a structure that can only rotate . This additional degree
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On the structure of the theory of polar elasticity 1371

of freedom, adjoined to χ to give the generalized motion of the continuum, is thus
best described by an orthogonal transformation X which maps a unit vector D of
KR at X into a unit vector d of Kt at x, while F mapped a small increment dX
into a small increment dx. Thus X enjoys the following properties:

X = {Xi
·K}, (2.9 a)

X−1 = {XK
·i } = XT, (2.9 b)

det X = +1, (2.9 c)

X · X−1 = X · X−1 = 1, (2.9 d)

X−1 · X = XT · X = 1R. (2.9 e)

Following Kafadar & Eringen (1971), we introduce the so-called Cosserat and wryness
tensors, respectively, E (German gothic E) and G (German gothic G), both material
measures of finite strains, by

E := FT · X, (2.10 a)

G := 1
2X−1×̇(∇RX), (2.10 b)

where the symbolism introduced is such that E is the material pull back of X and
G is a material geometric object which is axial on its first index, being associated
by duality with the skew quantity obtained by taking the material gradient of (2.9).
In components these material covariant objects read (note that in (2.10) the vector
product × is effected on M3 while the (superimposed) inner product is effected in
E3)

EKL = δijF
i
·KXj

·L, GQL = 1
2ε
··P
QKXK

·i X
i
·P,L. (2.11)

It is more than a curiosity to note that

C = C · CT. (2.12)

The (physical) velocity associated with X is obviously defined and given by

Ẋ :=
∂X

∂t

∣∣∣∣
X

= ν̄ · X, ν̄ = Ẋ · X−1 = −ν̄T. (2.13)

The axial vector ν associated with the skew tensor velocity ν̄ is given by

ν = − 1
2 dual ν̄, i.e. νk = −1

2ε
··q
kpν̄

p
·q. (2.14)

Reciprocally,
ν̄ = −dual ν, i.e. ν̄km = −εkmnνn. (2.15)

Again, the skew symmetry inherent in ν is a result of the purely rotational character
of the microstructure. In conclusion of these kinematical developments, the direct
generalized motion of our polar continuum is given by the nine functions

{χ(X, t),X(X, t)}, (2.16)

with velocities {v, Ẋ}, first material gradients (deformations) {F ,∇RX} and inde-
pendent finite strains {E,G} in the so-called direct motion description (Maugin
1992). Equation (2.16) clearly defines the basic fields in terms of the space-time
parametrization (X, t) of this description. We are thus unequivocally equipped for a
field approach to polar elastic media.
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1372 G. A. Maugin

(b ) Lagrange equations of motion
For a general theory of polar elastic media of the first (gradient) order, in all

generality we should start with a Lagrangian function L per unit volume of the
reference configuration as

L = L̄(x,v,F ,X, Ẋ,∇RX;X, t), (2.17)

where the field quantities and derivatives are to the left of the semi-colon and the
parameters of the description to the right. Homogeneity of physical space rules out
any explicit dependence on x and the lack of dissipation rules out the explicit depen-
dence on t. That is, (

∂L̄

∂x

)
expl

= 0, (2.18 a)(
∂L̄

∂t

)
expl

= 0. (2.18 b)

In quasi-statics, where inertial effects are altogether discarded, the Lagrangian
function per unit reference volume reduces to minus the elastic potential W . Finally,
nothing a priori rules out a possible dependence on X, so that we have

∂L̄

∂v
= 0,

∂L̄

∂Ẋ
= 0, L̄ = −W̄ , (2.19)

with
W = W̄ (F ,X,∇RX;X), (2.20)

which may be considered as Lagrangian function for all practical purposes. Accord-
ingly (see, for instance, Maugin (1970) in a more complex case accounting also for a
finite spatial extension of the material body and boundary conditions), in the absence
of external stimuli and identifying easily generalized coordinates and momenta, the
basic field equations are given by the Euler–Lagrange equations associated to the
expression (2.20). That is, at all regular material points X in the material body,

Eχ :=
∂L̄

∂x
−∇R · ∂L̄

∂(∇Rχ)
= ÷RT = 0 (2.21)

and

EX :=
∂L̄

∂X
−∇R · ∂L̄

∂(∇RX)
= ÷RM+N = 0, (2.22)

in which we have defined the two-point tensor fields T , M and N, with tensorial
components TK·i or TKi, MKL

··i or MKLi and NK
·i or NKi, respectively,

T :=
(
∂W̄

∂F

)T

, (2.23 a)

M :=
(

∂W̄

∂(∇RX)

)T

, (2.23 b)

N := −
(
∂W̄

∂X

)T

, (2.23 c)

where the first is none other than the first Piola–Kirchhoff stress and the second
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On the structure of the theory of polar elasticity 1373

and third may be referred to as the Piola–Kirchhoff microstress and the microforce,
respectively. Here the divergence ÷R (not a covariant one; it just uses partial deriva-
tives ∂/∂XK) is taken with respect to the first index of tensors. To be complete we
also introduce the other derivative, a material covector, f inh by

f inh := −
(
∂W̄

∂X

)
expl

, (2.24)

which for the moment serves no purpose. If we recognize in (2.21) the balance of
physical momentum in its quasi-static form in the absence of body force, we must
admit that (2.22), although indeed the field equation associated with the microstruc-
ture, a priori does not ring a bell. The reason for that is that, if (2.21) reflects, via
the invariance (2.18) (sometimes referred to as homogeneity of space by physicists),
the balance of physical momentum, albeit in a particular case, (2.22) is not a priori
related to any classical conservation law of mechanics. Indeed, the second classi-
cal invariance in mechanics is that under time-independent rotation in the physical
framework . This is the rotational part (also referred to as isotropy of space by physi-
cists) of what may be called Euclidean invariance . As the group of proper rotations
SO(3) is connected, it is sufficient to study the invariance under infinitesimal gen-
erators (skewsymmetric objects). Applying this to the scalar function W̄ yields the
following constraint (in fact three independent scalar equations (see Maugin 1970))
(skew means taking the skewsymmetric part of the corresponding spatial tensor):

(F · T − X · N +∇RX : M)skew = 0. (2.25)

The very form of this expression suggests to take the material inner product of
equation (2.22) with ν̄, take the skew part of the resulting spatial tensor equation,
i.e.

CX := {X · (÷RM + N)}skew = 0, (2.26)
and combine the result with (2.25) to reach the following sensible equation:

÷R M + F ×· T = 0, (2.27)

where the symbolism ×· has the opposite operational meaning to the symbolism ×̇
in (2.10 b), meaning vector product in E3 and (subimposed) inner product on M3

(see index notation in equation (2.29) below), and the two-point tensor field M of
tensorial components MKi is defined by

M := {MKi = εipqMKL
··p XqL}. (2.28)

Equation (2.27) indeed is the balance of physical moment of momentum , in quasi-
static form. In particular, whenever W does not depend on the microstructure, this
equation reduces to the classical one

F ×· T = 0 or εijkF
j
·KT

Kk = 0 or (F · T )skew = 0, (2.29)

which reflects the symmetry of the Cauchy stress—the stress tensor in Kt—in the
absence of microstructure, spin and body couple.

Obviously then, in field theory, equation (2.27) is not a direct field equation but
the result of a manipulation that takes the ‘isotropy of space’ into account. But we
have not yet exhausted the possible conservation laws as we said practically nothing
about (2.18 b) and (2.24).
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1374 G. A. Maugin

3. Canonical balance laws

Canonical balance laws are those balance laws which concern the whole physical
system under consideration and not one degree of freedom in particular. They in fact
relate to the space-time parametrization of the problem, hence here the invariance
or lack of invariance under changes of space-time parameters X and t. Two essential
methods can be used to reach those equations. The sophisticated one makes use of
the celebrated Noether’s theorem according to which a conservation law is associated
with each parameter of the description (see Maugin 1992; Maugin & Trimarco 1992;
Soper 1976). The ‘poor man’ one uses algebraic manipulations of the already known
field equations. We naively start with the latter. To that purpose we add up the
inner product of equation (2.21) with v to the contracted product of equation (2.22)
with Ẋ, i.e. we form the vanishing scalar quantity

v · Eχ + tr(Ẋ · EX) = 0. (3.1)

This, by integration by parts and use of commutation rules between derivatives and
of the obvious identity

tr(ν̄ · CX) = 0, (3.2)
where CX is the vanishing skew tensor defined in (2.26), yields, after some algebra
that we leave to the reader,

÷R (T · v +M · ν)− ∂W

∂t

∣∣∣∣
X

= 0. (3.3)

On account of the second equation of (2.18), this equation is the local statement of
energy conservation in quasi-statics. It is readily verified that this can also be written
in terms of the original field X and its time derivative as

÷R (T · χ̇+ M · Ẋ)− ∂W

∂t

∣∣∣∣
X

= 0, (3.4)

because there holds the trivial identity M · ν ≡M · Ẋ.
We can perform the parallel space-like operation on equations (2.21) and (2.22)

by forming the following vanishing material covector (cf. equation (3.1)):

FT · Eχ + (∇RX) · EX ≡ 0. (3.5)

Integration by parts, exploitation of the commutation rules between various deriva-
tives and taking account of the constitutive equations (2.23) and of the defini-
tion (2.24) results in the following fully material balance law:

÷R b+ f inh = 0, (3.6)

where the mixed material stress tensor b is canonically defined by

b = W1R − T · F −M : ∇RX. (3.7)

This is the polar-elasticity generalization of the so-called Eshelby stress tensor
(coinage by Maugin & Trimarco in 1992—originally this would have been referred to
as the energy-momentum tensor by Eshelby (see Maugin 1993), but this denomina-
tion is unfortunately misleading). The presence of the material inhomogeneity force
f inh—according to which the material properties of the solid depend on the material
point X, here supposedly in a smooth way—in equation (3.6), obviously shows that
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On the structure of the theory of polar elasticity 1375

equation (3.6) is the result of the lack of invariance of the physical system under
translations in X space. This is indeed material inhomogeneity in its primitive defi-
nition. The full dynamics form of equation (3.7) is referred to by us as the equation of
pseudo-momentum or material momentum (in a general setting, i.e. even when dissi-
pative processes are present) (see below). It is the balance of canonical momentum in
the non-dissipative variational formulation à la Hamilton–Lagrange. In the absence
of elastic inhomogeneities, equation (3.6) reduces to the following mere identity (as
this is not independent of equation (2.21)):

÷R b = 0. (3.8)

Three important questions can be raised concerning (3.6) and (3.8). First, the
way they were obtained here, in fact, is a polar-elasticity, materially inhomogeneous,
generalization of an identity initially pointed out by Ericksen (1977) in classical
elastostatics as the original Ericksen identity would simply read FT · Eχ ≡ 0 in
our formalism. This was generalized to the case of non-dissipative liquid crystals—
exhibiting thus an internal degree of freedom—by Maugin & Trimarco (1995a). Here,
the generalization is equation (3.5).

Second, equations (3.3) and (3.6) should be compatible with one another in the
sense that in a good canonical mechanics (3.3) and (3.6) are but the time-like and
space-like components of a four-dimensional balance law. This is indeed the case as
we let the reader check that (3.3) is none other than the equation

V · (÷Rb+ f inh) = 0, (3.9)

where V is the material velocity defined in (2.6).
Third, one may wonder what is the symmetry condition on b so that the original

law of moment of momentum is verified. In classical elastostatics, it was shown by
Epstein & Maugin (1990) that this condition, on account of (2.29), reads

(C · b)skew = −FT · (F · T )skew · F ≡ 0, (3.10)

or
C · b = bT ·C; (3.11)

expressis verbis: ‘b is symmetric with respect to the Cauchy finite strain’, which thus
plays the role of deformed metric. In the present case, this requires a little bit more
work because (3.10), on account of (2.25), is now replaced by the following covariant
material condition:

÷R B + C = (C · b)skew, (3.12)
in which the fully material tensors B and C may tentatively be called the Eshelby
hyperstress tensor B and the material couple tensor, respectively. In components
these are defined by (square brackets indicate skewsymmetrization)

BK
·PQ ≡ BK

·[PQ] = C[P |L|MLK
··i F

i
·Q] (3.13 a)

and
CPQ ≡ C[PQ] = −(C[P |K|F i·Q]),LMLK

··i . (3.13 b)

The proof of (3.12) is as follows. Compute (C · b)skew from the definitions (2.4)
and (3.7) of C and b. In the obtained expression replace (F · T )skew by its value
extracted from (2.25), integrate by parts, introduce E from its definition (2.10) and
enforce (2.22), so that one is left with (3.12) on account of definitions (3.13). An
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equation such as (3.12), an identity, is entirely new. It is of interest because it nicely
completes the mechanics on the material manifold—or Eshelbian mechanics that we
developed since 1989. In particular, equation (3.12) gives a hint of what may occur
in the full material transcription of continuum theories with microstructure. This
is in agreement with the recently developed equations of the theory of dislocated
materials with torsion (Kröner & Maugin 1998), where an equation with the same
structure as (3.12) of necessity appears—in that case the structure is not related to
a rigid microstructure, but to anelasticity.

We now have apparently exhausted the balance laws, whether canonical or not,
of the present theory as we finally considered the invariance under changes of both
the fields (χ,X) and the parameters (X, t). This is confirmed by the application of
Noether’s theorem (the sophisticated way), for instance, as mathematically stated
in Maugin (1993) or Soper (1976). Indeed, direct application of the formulas given
in these books or of formulas (5.3)–(5.4) in Maugin & Trimarco (1995a) yields equa-
tions (3.4) and (3.6) at once. However, we must remark that both physical balance
of moment of momentum—here expressed by equation (2.27)—and its fully material
transcription (3.12) are not directly obtained; they always are the result of further
manipulations. Worse than this, had we considered the moment-of-momentum form
(2.27) to start with, instead of the original field equation (2.22), we would have met
insuperable obstacles to prove equation (3.6). If we follow along the lines of our book
(Maugin 1993, ch. 4), we could also construct new material balance laws (not neces-
sarily conservation laws) corresponding to the scalar moment and vectorial moment
of equation (3.6), i.e. symbolically and in accord with basic notions of quaternion
algebra,

X · (÷Rb+ f inh) = 0 (3.14)
and (⊗ indicates the tensor product)

{X ·C ⊗ (÷Rb+ f inh)}skew = 0, (3.15)

where C is used as the deformed material metric in order to take the skew part of
a truly covariant object. The computation of the left-hand side of (3.15) provides
an expression for (C · b)skew and the elimination of this skew quantity between this
expression and (3.12) yields the following quasi-static balance of moment of pseudo-
momentum:

÷R B̄ + C̄ + Cinh = 0, (3.16)

wherein both B̄ and C̄ have orbital contributions and, together with Cinh, are defined,
component wise, by

B̄
P

·LQ ≡ B̄
P

·[LQ] := BP
·LQ +XKCK[Lb

P
·Q],

C̄LQ ≡ C̄[LQ] := CLQ +XKCK[L,|P |bP·Q],

Cinh
LQ := −XKCK[Lf

inh
Q] . (3.17)

We shall not dwell in greater detail with (3.14), (3.15) and (3.16) as they do not seem
to play, for the moment, a great role in further applications (but (3.14) in classical
elasticity is known to be related to the spherical expansion of voids or inclusions and
(3.15) to the progress of defects of the disclination type (cf. Maugin 1993)). Finally,
noting that equation (2.25) represents a set of three first-order partial differential
equations which can be integrated along characteristics, a first integral of (2.25) is
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readily obtained as
W = Ŵ (E,G;X), (3.18)

where E and G are the Cosserat and wryness tensors defined in (2.10). The functional
dependence (3.18) is due to Kafadar & Eringen (1971). It is objective, i.e. form
invariant, under time-dependent rotations of the actual frame (in Kt). The fact that
such a form results from the rotational invariance condition (2.25)—in which no
time was involved—is connected with the non-dissipative nature of the material
considered (its behaviour involves neither time derivatives nor histories of the state
variables). In other words, the rotational part of Euclidean invariance and objectivity
yields the same restriction in this case. Thus (2.25) is automatically fulfilled and the
constitutive equations (2.23 a) and (2.28) are now given by

TKi =
∂Ŵ

∂EKL
Xi
·L, MKi =

∂Ŵ

∂GLK

Xi
·L. (3.19)

The beauty and symmetry of these formulae must be underlined. It should also be
noted for all practical purposes that in computing ∂W/∂Xi

·P one should account for
the dependence of Ŵ on X via both E and G—the latter through X−1 since one
can show the following useful results which are consequences of equations (2.9d) and
(2.9 e):

∂(X−1)L·j
∂Xi
·K

= −(X−1)K·j (X−1)L·i,
∂Xi
·L

∂(X−1)K·j
= −Xi

·KXj
·L, (3.20)

from which it follows that
∂GMN

∂(X−1)K·j
= 1

2ε
P
MKXj

·P,N . (3.21)

These intermediate computations are essential in checking the balance laws enunci-
ated above directly from (3.16).

4. Fracture and energy-release rate

It is understood that the balance equations constructed above, whether canonical
or not, are valid at all material points where the fields do not present singularities.
For a finite material region V made of such points, we can integrate these balance
equations over V and use the standard divergence theorem and commutation rule
between material integration and material time derivative. For instance, from equa-
tions (2.21) and (2.22) contracted, respectively, by virtual velocity fields v∗ and Ẋ

∗
,

and adding up the results, we can write a weak form of the balance of physical forces
and microforces as∫

∂V

(T · v∗ +M · Ẋ∗) dS −
∫
V

tr{T · (∇Rv
∗)T +M · (∇RẊ

∗
)T} dV = 0, (4.1)

where we set (either these are so-called natural boundary conditions with prescribed
loads T and M or these are mere definitions of the right-hand sides)

N · T = T , N · M = M, (4.2)

where N is the unit outward normal to the supposedly regular surface ∂V bounding
the material region V . Expression (4.1), in which we identify the virtual power of
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internal and contact forces, respectively, is in the classical form of the principle of
virtual power for a finite body in quasi-statics and the absence of body loads (cf.
Maugin 1980). Following this last reference we let the reader check by himself that
the translational and rotational parts of a virtual rigid-body motion render the global
form of equations (2.21) and (2.27) extended to V ; that is,∫

∂V

T dS = 0,
∫
∂V

(N · M+ x× T ) dS = 0.

In the same regularity conditions, through a material-space integration procedure,
the canonical equations (3.4) and (3.6) yield

d
dt

∫
V

W dV =
∫
∂V

(T · v +M · Ẋ) dS (4.3)

and ∫
V

f inh dV +
∫
∂V

N · b dS = 0, (4.4)

where the latter is understood component wise. For a materially homogeneous region
V , (4.4) further reduces to the simple strict conservation law∫

∂V

N · b dS = 0, (4.5)

i.e. ∫
V

(WN − T · F −M · ∇RX) dS = 0. (4.6)

Here equations (4.3)–(4.5) serve no special purpose except perhaps as checks of
a numerical scheme—this is classical for the energy, obviously original for equa-
tions (4.4) and (4.5). This type of equation becomes of real interest if the fields are
not sufficiently regular. This is the case in the paradigmatic problem of fracture such
as met in the possible progress of a straight-through crack that we briefly examine
now. Indeed, for instance, in a homogeneous body, the local equation ÷Rb = 0 is not
integrable at the tip A of a crack C in classical elasticity; this is due to the singularity
order of b, which being at least quadratic in the fields, has a singularity which, in
two dimensions, overcomes the bulk integration. Thus, around a singular point such
as A, ∫

VA

(÷Rb) dV 6= 0 (4.7)

as VA shrinks to zero. The same holds true for ∂W/∂t. As a consequence, the lack
of integrability will manifest itself in the global equation (4.7) as a global material
force F similar in its effects to the global force of inhomogeneity present in (4.4)—
a material covector—called the driving force on the tip of the crack. That is, this
‘force’, fictitious in a way since not acting on matter per unit mass but acting on a
field singularity, is defined by

F := lim
VA→0

∫
∂VA

N · bdSA. (4.8)

But we need not apply the limit procedure if F is along the direction of the crack
and the faces of the crack C are free (homogeneous boundary conditions along the
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Γδ

∂Vδ

V
A EI

Vδ

δ

(a) (b)

Figure 1. (a) Notch, (b) limit crack.

faces of C (cf. the integrand in equation (4.6))), because then F ·N = 0 along the
faces of the crack and the integral in (4.8) is obviously contour independent.

Let us apply this to the (two-dimensional) crack problem in figure 1b, where the
straight-through crack is considered as the limit of a family of notches (figure 1a)
indexed by the half thickness δ (also the radius of the front of progress Γδ). ∂Vδ is
the path of integration in the material for a given δ and front Γδ. We have thus

F(A) = lim
δ→0

∫
∂Vδ

N · b dS. (4.9)

It is immediately checked that this can also be written as

F(A) = lim
δ→0

∫
Γδ

NΓ · b dS = lim
δ→0

∫
Γδ

WNΓ dS, (4.10)

in which we recognize the outflux (NΓ is oriented toward the material; the fronts Γδ
have zero surface load) of Eshelby stress through the tip of the crack. This follows
from the fact that (4.5) holds for the regular domain Vδ encircled by ∂VΓ , Γδ (free
of loads; hence the reduction of N · b to WN) and the two (free) faces of the crack.
Now we can perform a similar reasoning on the energy equation. To that purpose we
first write the global energy equation for the regular domain Vδ, δ fixed, with a notch
front Γδ that progresses at material velocity V̄ in the Er direction. Accounting for
the motion of that part of the surface and using the Reynolds transport theorem for
an evolutive domain of integration, the volume integral of (2.21) yields

d
dt

∫
Vδ

W dV + G =
∫
∂Vδ

(T · v +M · Ẋ) dS, (4.11)

where the G is defined by

G(Γδ) =
∫

Γδ

W (V̄ ·NΓ ) dS. (4.12)

Equivalently, this is also given by

G(Γδ) =
∫
∂Vδ

{W (V̄ ·N) + T · v +M · Ẋ} dS − d
dt

∫
Vδ

W dV. (4.13)

Now we must proceed to the ‘sharp crack’ limit as δ goes to zero. Following Dascalu
& Maugin (1993), we note that P denoting any point of Γδ and writing the general
motion as χ(X, t) = χ(XP + r, t), so that, by differentiation,

v = −F · V̄ +
∂χ̄

∂t
, (4.14 a)
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V̄P =
∂XP

∂t
, (4.14 b)

where χ(X, t) = χ(X, t); by convection we have

V = V̄ − F−1 · ∂χ̄
∂t
, V̄ = V̄rEr. (4.15)

Let all points P of Γδ be in uniform motion V̄ = V̄ (t), then the deformation may
be assumed the same at all points P and thus ∂χ̄/∂t = 0. Similarly, we shall obtain,
for Ẋ (compare to (4.14 a)),

Ẋ = −V̄ · ∇RX + regular term. (4.16)

The above two expressions (4.15) and (4.16) can also be interpreted in the limit at δ
goes to zero, by saying that the time derivatives of the basic fields behave regularly
in the frame moving with the tip A, i.e. the derivatives defined by

∂

∂t
χ = v + V̄ · ∇Rχ,

∂

∂t
X = Ẋ + V̄ · ∇RX (4.17)

are regular at A, so that we have the essential behaviour indicated in (4.16), an analog
formula holding for χ. This is a result of Gurtin (1979) here generalized to the case
of polar elastic media. To that purpose we must remark that, according to the work
of several authors, the velocity field of the classical motion and the micromotion,
equivalently the usual strain and microstrain, have the same singularity order at the
tip of a sharp crack as in classical elasticity (cf. Maugin (1992) for classical elastic-
ity, Sternberg & Muki (1967), Ejike (1969) and Atkinson & Leppington (1974) for
coupled-stress and micropolar elasticity—it is this mathematical fact which softened
the enthusiasm for the couple-stress theory in the 1970s).

As only the component V̄I of V̄ is non-zero, scalar multiplication of (4.10) by V̄ ,
on account of the above stated relations, yields the following remarkable result:

G(A) = lim
δ→0
G(δ) = V̄ · F(A). (4.18)

This is a global result akin to the local one (3.9) because it relates a quantity G(A),
known as the energy-release rate, to the power expended by the driving force in a
material motion of velocity V̄ (here of the crack tip). But the quantity (where V
evolves with the crack length)

Φ(V ) ≡
∫
∂V

(T · v +M · Ẋ) dV − d
dt

∫
V

W dS, (4.19)

the opposite of the total potential energy rate, is also the time rate of growth of total
entropy, i.e. dissipation rate in the irreversible quasi-static evolution of the domain
V by cracking (cf. Maugin 1992, ch. 7). Thus expression (4.18) in fact corresponds
to dissipation, a quantity which cannot be negative. Hence the dissipation inequality

G(A) = V̄ · F(A) > 0; (4.20)

this supports a formulation of a functional relationship between V̄ and F in the
framework of irreversible thermodynamics or one of its ‘nonlinear’ generalizations.
Realistically, this relation will be of the ‘threshold type’ (just like in plasticity), the
actual value of F being computed from an evaluation of the field solution at each
given length of the crack during extension and this value being compared at each
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increment to a characteristic material value proper to each material (the fracture
toughness or tenacity), this comparison deciding of a further evolution (growth) or
no evolution.

5. Accounting for inertia

If inertia is accounted for, then we must consider the true Lagrangian density per
unit volume of KR

L = K −W, (5.1)
where K, the kinetic energy per unit volume of K, must involve the velocity fields
{v, Ẋ} or {v, ν} in one way or another. For a classical type of inertia, e.g. no gyro-
scopic term, K is taken a homogeneous function of degree two of these velocities.
That is,

2K ≡ ∂K

∂v
· v +

∂K

∂Ẋ
i

·K
Ẋ
i

·K . (5.2)

In the case of media without microstructure we obviously have K = 1
2ρ0(X)v2, where

ρ0(X) is the matter density at KR, possibly a function of the material point X if
the material presents inertial inhomogeneities, so that we have the following material
conservation law:

∂ρ0

∂t

∣∣∣∣
X

= 0. (5.3)

The general solution ρ0(X) of this, and the actual density ρ(x, t) at placement x in
E3, are related by the integral form of the continuity equation

ρ0 = ρJ. (5.4)

The question now is how do we generalize this to the present case with a rotational
microstructure? The simplest solution of the functional equation (5.2) reads

K = 1
2ρ0(X)(v2(X, t) + L··KLij (X)Ẋ

i

·KẊ
j

·L), (5.5)

where the geometrical object L is symmetric in indices i and j and also in indices K
and L. On account of (2.13) and (2.14), this can also be written as the apparently
simpler form

K = 1
2ρ0(X)(v2(X, t) + σ(X, t) · ν(X, t)), (5.6)

where the (axial and spatial ) spin vector σ and the inertia tensor of the microstruc-
ture j (a symmetric spatial tensor with six independent components at most) are
defined by

σ = j · ν (5.7)
and (in components)

jpq = εp·ikε
q
·jlL

ijKL(X)Xk
·KXl

·L. (5.8)
It was shown by the Eringen school in the 1960s that if the material inertial tensor
JPQ = jpq(X−1)P·p(X

−1)Q·q satisfies the material conservation law (cf. equation (5.3)),

∂JPQ

∂t

∣∣∣∣
X

= 0, (5.9)
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then, in turn, j satisfies the following ‘spatial’ balance law (parentheses around a set
of indices indicate symmetrization):(

djkl

dt

)
− 2ν̄(k

·mν̄
l)m = 0. (5.10)

The generalization of equations (2.21), (2.22), (2.27) and (3.4) to the case of full
dynamics is easily formulated by adding terms (the third and fourth after computa-
tion)

− ∂

∂t

(
∂L

∂v

)
, − ∂

∂t

(
∂L

∂Ẋ

)
, − ∂

∂t
σ

∣∣∣∣
X

, − ∂

∂t
L

∣∣∣∣
X

,

repectively, in the right-hand side of these equations. Thus the replacement equations
corresponding to the balance laws (2.21), (2.27) and (3.3) read

∂

∂t
ρ0v

∣∣∣∣
X

−÷RT = 0, (5.11)

∂

∂t
ρ0σ

∣∣∣∣
X

−÷RM − F ×· T = 0, (5.12)

and
∂

∂t
(K +W )

∣∣∣∣
X

−÷R(T · v +M · ν) = 0, (5.13)

which are, in the classical ‘material’ form, given in Eringen & Kafadar (1976) in
the absence of dissipative processes and external ‘forces’. Much more intriguing
is the generalization of the ‘pseudo-momentum’ equation—here a completely new
equation—because the fully dynamical version of that canonical equation will cap-
ture all momenta, whether linear or angular, in the notion of pseudo-momentum.
Indeed, the canonical definition of material momentum with a generalized motion
(2.16) labelled in an ordered sequence of independent components (generalized coor-
dinates) by qα(X, t), α = 1, . . . , 9, is (cf. Maugin 1993; Soper 1976) that of a material
covector P such that

P := −
∑
α

(∇Rq
α)
(
∂L

∂q̇α

)
. (5.14)

Accordingly, on account of (5.1) and (5.5), we directly obtain

P = −ρ0(FT · v − L · ν), (5.15)

where the linear operator L, a two-point tensor field, is defined in components by

L·nL := −Xi
·K,LεjmnL

··KQ
ij Xm

·Q. (5.16)

On account of (2.4) and the second equation of (2.6), we check that (5.15) can also
be written as

P = ρ0(C · V + L · ν), (5.17)
which clearly exhibits the contribution of the classical motion and the micromotion
of rotation velocity ν to pseudo-momentum. The corresponding balance equation is
the following generalization of equation (3.6):

∂P
∂t

∣∣∣∣
X

−÷Rb = f inh, (5.18)
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where, now,

b = −(L1R + T · F + M : ∇RX), f inh =
(
∂L

∂X

)
expl

. (5.19)

Expression (5.15) with its two contributions is not without recalling what was
obtained for liquid crystals—another continuum system exibiting two vectorial
degrees of freedom endowed with inertia—in Maugin & Trimarco (1995a). How-
ever, there is more to it as we know that the Hamiltonian-mechanics definition of P
is (Maugin 1993)

P =
∂L

∂V
, (5.20)

because of the first equation of (2.6) and the fact that P is the generalized momen-
tum associated with the generalized coordinates X. But the latter definition (5.20)
truly holds when all fields are expressed in terms of the Eulerian independent vari-
ables (x, t); what we called the inverse-motion description. In these variables, the
Lagrangian density L̂ per unit volume of the actual configuration Kt will obviously
read

L̂ = 1
2ρ(V ·C · V + L··KLij Ẋ

i

·KẊ
j

·L)− JŴ , (5.21)

because v2 ≡ V ·C · V , but with

Ẋ
i

·K :=
(
∂Xi
·K
∂t

) ∣∣∣∣
X

=
(
∂Xi
·K(x, t)
∂t

) ∣∣∣∣
x

− V · ∇RXi
·K . (5.22)

Then we immediately check that the definition (5.20) applied to (5.21) yields directly
(5.17), but with ρ replacing ρ0.

Equations (5.3), (5.9), (5.11), (5.12), (5.13) and (5.18) are the complete set of
balance laws in the dynamical, albeit non-dissipative, case. We let the reader study
the consequences of this fully dynamic formulation on the formulae given in §4 for
fracture (by following the work of Dascalu & Maugin (1993) for classical elasticity).

Remarks on time and length scales
Let T and L be macroscopic time and length scales associated with the body and

physical data, e.g. frequency or transient time of externally applied forces, and the
typical size of the specimen. Taking account of inertia introduces two characteristic
times tM and tMM related, respectively, to the inertia of classical motion χ (deforma-
tion) and micromotion X. Characteristic velocities cM and cMM, frequencies ωM and
ωMM and wavelengths λM and λMM, are thus introduced which must be compared to
one another and to those which can be associated with external stimuli. Depending
on the case studied and the microstructure included, one may discard (i) the inertia
of micromotion compared to that of the classical motion (a situation that we may
refer to as ‘quasi-microstatics’; generally speaking, micromotion gives rise to high-
frequency phenomena which are in the ‘optical’ range (cf. Pouget et al. (1986a,b)
for a physical example with numerical figures)), or (ii) the inertial time scale of the
micromotion compared to the time scale of the viscous process associated with that
micromotion (this is done in liquid crystals where rotational inertia is such that its
effects are most often neglected compared to those of rotational viscosity, whose own
time scale is compared to that of the macromotion, e.g. via the Deborah number in
rheology (see de Gennes 1974)).
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The introduction of the characteristic wavelength λMM is more problematic as, if
λM is naturally to be compared to L (in many cases λM � L), λMM—which naturally
satisfies λMM � λM—is of the order of the characteristic length `MM related to
the introduction of the micromotion gradients ∇RX—and to the spatial range of
interactions in a lattice description (e.g. first-neighbour interactions for rotational
effects in a crystal equipped with a polar group such as NaNO2)—and/or of the
order of the characteristic length `R related to material inhomogeneities. We have
the following sensible orders of magnitude:

`MM
∼= |X|
|∇RX|

∼= ‖C‖‖G‖ , `R ∼= |L̄|
‖f inh‖ . (5.23)

Whenever O(`MM) = O(`R) (the case of micro-inhomogeneities), both microstruc-
ture and material inhomogeneities are to be included in the treatment. This is the
case if we have microcracks, which are micro-inhomogeneities in their own right, as
their presence would manifest through material forces of quasi-inhomogeneities (com-
pare to §4). This is also what occurs in the problem of phase-transition fronts—see
§7 where this is taken of mathematically zero thickness—where the true transition
zone (the material inhomogeneity) is of the order of a few lattice spaces, i.e. of the
order of `MM. Similarly, for an external excitation (high frequency) of wavelength
λe
∼= `MM, the microstructure is excited; it must necessarily be taken into account.

The same argument holds for material inhomogeneities. This corresponds to the re-
interpretation of the continuum in its discrete, lattice description. Obviously, the
same questions must be raised in the discretization of the continuum in numerical
schemes . The capture of scale effects obviously requires a mesh whose characteristc
size be much smaller than `MM or `R, as otherwise, parodying G. Bachelard (1927),
‘the mesh may be too coarse, stepping over the discontinuities of the punctiform
distribution, and missing the ‘confusion’ that would prevail’; but this ‘confusion’
indeed is the rich phenomenon, the complex behaviour , on which micromechanics
focus attention. In summary, scale effects related to the presence of both ∇RX andX
in the functional dependence (2.17) will play a role in many instances both physical
(e.g. in the presence of microcracks, micro-inclusions, short-wavelength excitation,
existence of field singularities of the point, line and surface types) and numerical.
Because of this possible matching of scales, the recent progress in numerical imple-
mentation allowing for fine meshes and fast computations thus increases the interest
in the model of polar media. Note that the basic invariance of physics mentioned in
(2.18 a) has nothing to do with the scale effects which are here of purely material
origin, i.e. are related to the X dependence of both physical properties and field
solution.

6. Thermoelastic conductors

Although heat conduction will be the only dissipative process present, we have
no longer the possibility to base the reasoning on a variational principle and the
exploitation of Noether’s principle. In this case we are limited to the ‘naive’, but
efficient, direct method already used in §3. That is, we assume that the physical
balance laws have already been established by other means (postulate of global bal-
ance laws) and the general constitutive equations are obtained via the now standard
thermomechanical approach (cf. Kafadar & Eringen 1976) for the case of thermoe-
lastic polar media in finite strains. The essentially new field variable—compared to
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previous sections—is the absolute temperature θ > 0 and we must then distinguish
between internal and free (Helmholtz) energies. We call these, respectively, E and
W per unit volume at KR. Then the basic local balance laws, all regular material
points X in the absence of body force and couple, and body heat source, are those
of mass, micro-inertia, physical momentum, moment of momentum, energy (first law
of thermodynamics) and entropy in the following ‘material’ form:

∂

∂t
ρ0

∣∣∣∣
X

= 0, (6.1)

∂

∂t
JKL

∣∣∣∣
X

= 0, (6.2)

∂

∂t
p

∣∣∣∣
X

−÷RT = 0, (6.3)

∂

∂t
ρ0σ

∣∣∣∣
X

−÷RM − F ×· T = 0, (6.4)

∂

∂t
(K + E)

∣∣∣∣
X

−∇R · (T · v +M · ν −Q) = 0, (6.5)

θ
∂

∂t
S

∣∣∣∣
X

+∇R ·Q = 0, (6.6)

where Q is the material heat (out)flux and S is the entropy per unit volume at KR.
Equation (6.6) can also be written as

∂

∂t
S

∣∣∣∣
X

+∇R ·
(
Q

θ

)
=
d

θ
, (6.7)

where
d = −Q · ∇R(ln θ). (6.8)

The second law of thermodynamics imposes that d > 0, while the constitutive equa-
tions for non-dissipative processes have been deduced, by use of the ‘thermodynam-
ical admissibility’ argument, as

T =
(
∂W̄

∂F

)T

, M =
(

∂W̄

∂(∇RX)

)T

, S = −∂W̄
∂θ

, M ≡M×̇X, (6.9)

with
W = W̄ (F ,X,∇RX, θ;X) = E − Sθ. (6.10)

In so far as Q is concerned, it is only subjected to the non-negativeness condition
imposed on d and to the continuity condition

Q(F ,X,∇RX, θ,∇Rθ;X)→ 0 as ∇Rθ → 0. (6.11)

The set of equations (6.1) through (6.11) leaves us with very little possibility of
manoeuvre. In order to obtain the local balance of pseudo-momentum, we must
multiply (6.3) to the left by FT and, by integration by parts while taking account
of (6.10), (6.9) and the expressions of σ and L, show that the resulting covectorial

Phil. Trans. R. Soc. Lond. A (1998)

 rsta.royalsocietypublishing.orgDownloaded from 

http://rsta.royalsocietypublishing.org/


1386 G. A. Maugin

material equation reads

∂

∂t
P
∣∣∣∣
X

−÷Rb = f inh + f th, (6.12)

where P has already been defined and

b = −(Lth1R + T · F + M : ∇RX), (6.13)

Lth := K − W̄ (., ., ., θ;X), (6.14)

f inh :=
(
∂Lth

∂X

)
expl

, (6.15)

f th := S∇Rθ, (6.16)

in which Lth is some kind of effective Lagrangian built from the free energy; note
the difference with (6.5), where it is the internal energy (a function of S) that is
involved. We see that a local non-uniformity in temperature plays the same role
as a material inhomogeneity—via f th—in the balance of pseudo-momentum. This
quasi-inhomogeneity force remains there even when the material itself is homoge-
neous. Equation (6.12) is the polar-elasticity generalization of the result of Epstein
& Maugin (1995). This formula would help one formulate the problem of fracture
in the dynamical thermoelasticity of polar materials by generalizing the recent work
of Dascalu & Maugin (1995). However, much more interesting here is the fact that
equations (6.1)–(6.12) form the necessary background for the study of the progress of
phase-transition fronts in polar elastic crystals as, obviously, temperature effects are
most relevant then since the transition, if dissipative, must materialize in a localized
heat source.

7. Coherent phase-transition fronts

In a classical thermoelastic crystal, a coherent phase-transition front is defined as
a homothermal discontinuity surface Σ separating two phases and across which, not
only temperature is continuous (since the transition occurs at a temperature where
the two phases coexist), but also the material velocity V . This condition, expressed
here in terms of a velocity, simply means that the lattice sites at the front belong to
the two phases; we call this the continuity of lattice sites. In other words, although,
in general, two different crystalline structures exist on both sides of Σ , there are no
dislocations at Σ (cf. Maugin & Trimarco 1995a–c). This is a rather rigid definition
which we easily conceive as being seldom verified in practice. The conditions imposed
in the case of polar crystals are even more severe since the microrotations of material
points belonging to the two crystalline systems at Σ must obviously be synchronized
in time. Otherwise, we would have some kind of disclinations present at Σ . We
thus consider the very theoretical and pure case where, indeed, we can satisfy these
stringent continuity conditions. Those relating to placement and microrotations are
in fact applicable at the actual placement x. This is why it is the generalized velocities
based on X(x, t) and X(x, t)—and not X(X, t)—which are to be continuous at Σ .
In all, therefore, we should apply the following continuity conditions:

[θ] = 0, (7.1 a)

[V ] = 0, (7.1 b)
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∂X

∂t

)
x

]
= 0, (7.1 c)

where the symbolism [·] denotes, as usual, the jump of a quantity between its value
right ahead of the front Σ (side ‘plus’) and right behind Σ (side ‘minus’), the unit
normal N to Σ being oriented from Ω− to Ω+ if these are the two parts of the
material body Ω occupied by phase I (or ‘minus’) and II (or ‘plus’), respectively
(figure 2). A direct consequence of (7.1 c) and (7.1 b) is that[(

∂X

∂t

)
X

]
= −V̄ · [∇RX], (7.2)

where V̄ is the material vectorial velocity of Σ . We denote by θ̄ the temperature
field at Σ . The relevant question now is the following. If equations (6.1)–(6.12) are
satisfied in the two adjacent regions Ω±, for energies W̄± corresponding to different
symmetries, and thus different material coefficients, respectively, but each phase
being materially homogeneous (f inh ≡ 0 in Ω±), then what are the jump relations
satisfied by various fields at Σ? In particular, is there one such relation which, in fact,
governs the transition? To the first part of the question we answer in the following
pragmatic way. The jump relations associated with true conservation laws such as
equations (6.1)–(6.3) and (6.5) are known from the theory of hyperbolic systems
and the formalism of weak solutions to be obtained formally by replacing operators
∂/∂t|X and ∇R by −V̄N [·] and N · [·], respectively, where V̄N := V̄ · N . These
equations, together with the spin jump equation are recalled by Eringen & Kafadar
(1976) for polar media. Up to the notation of these authors which differs from ours
(in particular, material heat flux is of opposite sign in the two notations), these read

V̄N [ρ0] = 0, (7.3)

V̄N [JKL] = 0, (7.4)

N · [T + V̄ ⊗ p] = 0, (7.5)

N · [M + V̄ ⊗ ρ0σ] = 0, (7.6)

N · [(K + E)V̄ + (T · v + M · Ẋ−Q)] = 0. (7.7)
For a truly propagating front, V̄N 6= 0, equations (7.3) and (7.4) imply the continuity
of both ρ0 and JKL:

[ρ0] = 0, [JKL] = 0. (7.8)
As to equations (6.6), (6.7) and (6.12), which are not in conservative form, we can
only surmise that, in addition to the usual jump terms, we will have surface sources
qΣ , dΣ and fΣ , such that we can a priori write the jump relations

N · [θSV̄ −Q]− qΣ = 0, (7.9)

N · [SV̄ − (Q/θ)] = dΣ > 0, (7.10)
and

N · [b+ V̄ ⊗ P] + fΣ = 0. (7.11)
Here qΣ , dΣ and fΣ are, respectively, a surface heat source, a surface dissipation rate
and a surface quasi-inhomogeneity force. That a ‘force’ such as the latter intervenes in
the theory is not surprising as the translation of Σ inX space places the difference in
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phase on the two sides of Σ , i.e. a material inhomogeneity, per se, in evidence. By the
duality inherent in mechanics, a material ‘inhomogeneity force’, or a force acting in
a similar way (hence the qualification of ‘quasi-homogeneity’) ought to be generated.
It is clear, however, that the new surface quantities introduced in equations (7.9)
through (7.11) are not all independent. First, on account of (7.1), from (7.9) and
(7.10) we obviously have

dΣ = qΣ/θ̄, (7.12)
where θ̄ is the temperature shared by points of Ω± at Σ . The proof of the next
statement requires more work for which we give the detail only for the case of quasi-
statics (inertia neglected). Following along the examples provided by equations (3.9)
and (4.20), one tries to evaluate the power expended by the material force fΣ in the
velocity field V̄ of points of Σ where it acts. In the simplified frame now considered,
we have

P (fΣ ) = fΣ · V̄ = −N · [b] · V̄ , (7.13)
where b is given by expression (6.13) with K neglected. Simultaneously, evaluating
N · [Q] from (7.7), we have

N · [Q] = N · [EV̄ + T · v + M · Ẋ] = N · [θSV̄ ]− qΣ , (7.14)

where the latter follows from (7.9). Thus,

qΣ = −N · [W V̄ + T · v + M · Ẋ], (7.15)

where we performed the Legendre transformation W = E − Sθ. But because of
the continuity conditions (7.1 b) and (7.2), and of the second relation of (2.6), we
immediately check that

N · [T · v + M · Ẋ] = −N · [T · F + M : ∇RX] · V̄ . (7.16)

On comparing (7.15) and (7.13), we find that

P (fΣ ) = fΣ · V̄ = qΣ . (7.17)

As we are in quasi-statics and the jump relations (7.5) and (7.6) reduce to

N · [T ] = 0, N · [M ] = 0, (7.18)

we note that

N · [T · F + M : ∇RX] = 〈N · T 〉 · [F ] + 〈N ·M〉 : [∇RX], (7.19)

since X is obviously continuous across Σ . Here the symbolism 〈·〉 denotes the average
of the enclosed quantity at Σ . Finally, using the Maxwell–Hadamard lemma for jumps
of gradients of F and X, according to which [F ] and [∇RX] have representations

[F ]i·K = f iNK , [∇RX]i·KL = gi·KNL, (7.20)

we get

〈N · T 〉 · [F ] · V̄ + 〈N ·M〉 : [∇RX] · V̄ = [tr{〈T 〉 · F + 〈M〉 : ∇RX}]V̄N . (7.21)

Gathering these results we obtain that

qΣ = −HGV̄N > 0, (7.22)

where we have defined the so-called Gibbs–Hugoniot driving force HG by

HG = N · [b] ·N = [W − tr{〈T 〉 · F + 〈M〉 : ∇RX}]. (7.23)
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The results of this section show the following.
(i) If there is progress of the transition front, V̄N 6= 0, the dissipation at the front

is manifested by a localized hot surface source qΣ .
(ii) The Eshelby stress plays a fundamental role in computing the driving traction

acting on the front. Denoting by fΣ the normal component of fΣ , we can write the
following balance of material forces at Σ :

fΣ +HG = 0.

This equation represents the competition between a field quantityHG—that is known
at each instant when the field solution is known on both sides of Σ ; this by any means,
analytical or numerical—and the constitutive quantity fΣ , which is constrained to
satisfy the dissipation condition

θ̄dΣ = fΣ V̄N > 0. (7.24)

The latter provides a criterion of progress of the front, in a way similar to what
happens in elasto-plasticity, once we have a relationship

V̄N = B(fΣ , θ̄), (7.25)

which is of the threshold type (i.e. V̄N = 0 if |fΣ | has not reached the critical value or
V̄N possibly non-zero when this critical value is reached). More sophisticated criteria
that satisfy the constraint (7.24) can be imagined. In good physics, however, such
criteria should follow from a local analysis of the transition phenomenon at a smaller
scale.

(iii) The peculiar form (the second equation of (7.23)) ofHG—that does not involve
N—follows from the working hypothesis of quasi-statics. However, the fact that HG,
in agreement with Gibbs & Duhem’s vision, does not involve kinetic energy, for it
governs local material structural changes only, is a general fact holding even when
inertia is kept in the development (forthcoming). The proof then simply is a little
more lengthy. On account of inertia, the result would be

HG = [W ]− 〈N · T 〉 · f − 〈N ·M〉 · g, (7.26)

where f and g are the two two-point fields introduced component wise in equa-
tions (7.20).

(iv) The condition HG = 0 (no dissipation) obviously resembles the Hugoniot
condition (also an equation obtained through manipulations and not a field equation
per se) of shock-wave theory which selects the manner in which the two states of
a material on both sides of the wave are connected. However, whereas it is internal
energy that is involved in shock studies, it is the free energy that appears in our HG.
The reason for that is to be found in the basic hypothesis that here temperature is
continuous across Σ , while entropy is the determining thermodynamical quantity in
discussing shock waves.

8. Small strains and rotations

This special case is of interest because it is the only framework in which expressions
have been given so far for material forces in polar elastic solids; in fact, in a disguise,
so that it affords comparisons. In this case, one naturally introduces the relative
Cosserat tensor by

E := C− 1R. (8.1)
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N

Ω+Ω–

Σ

V

Figure 2. Phase-transition front Σ .

The motion gradient F and micropolar rotation X can be approximated by

F = 1S + (∇Ru)T, X = 1S + Φ, (8.2)

where 1S is a so-called shifter, u is the displacement field and Φ is skewsymmetric .
Accordingly, we have the following approximations:

C ∼= 1R + (∇Ru)T + Φ, E ∼= (∇Ru)T + Φ. (8.3)

Simultaneously, for G we have the linearized measure

G ∼= 1
21S×̇(∇RΦ). (8.4)

Define φ, the vector dual to the skewsymmetric tensor Φ, by

φK = 1
2εKLMΦML, ΦKL = −εKLMφM . (8.5)

Then, instead of E and G, we can, as well, use the following infinitesimal measures of
deformation for a linear polar elastic solid (we no longer distinguish between lower
and upper case Latin indices):

e := (∇u)T + dualφ = {eij = uj,i − εijkφk}, (8.6)
γ := ∇φ = {γij = φi,j}. (8.7)

In this approximation, the tensors T and M reduce to the usual (but here non-
symmetric) Cauchy stress tensor t and couple-stress tensor m with constitutive
equations

t =
∂Ŵ

∂e
, m =

∂Ŵ

∂γ
, S = −∂Ŵ

∂θ
, (8.8)

where, for a materially inhomogeneous thermoelastic polar solid, we have a free
energy density given by

W = Ŵ (e, γ, θ;x). (8.9)
The two basic laws of motion (5.11) and (5.12) take on the following form (compare
to Eringen 1968; Nowacki 1986):

ρ0
∂2u

∂t2
−÷t = 0, ρ0j · ∂

2φ

∂t2
−÷m− (1×· t) = 0. (8.10)

In components, the last equation reads

ρ0jij

(
∂2φj
∂t2

)
−
(
∂mji

∂xj

)
− εipqtpq = 0. (8.11)

Isotropic microinertia j = I1, i.e. jij = Iδij , is often assumed but this restriction is
not imposed by the formulation.
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On account of the simplifications introduced above, the canonical balance equa-
tions (energy and pseudo-momentum) take on the following form:

∂

∂t
(ρ0(e+ 1

2 u̇
2 + 1

2 φ̇ · j · φ̇))−∇ · (t · u̇+m · φ̇− q) = 0 (8.12)

and

∂

∂t
(−ρ0(∇u) · u̇− ρ0(∇φ) · j · φ̇) +

(
∂Ŵ

∂x

)
expl

− S∇θ

−÷ ((Ŵ − 1
2ρ0u̇

2 − 1
2ρ0φ̇ · j · φ̇)1− t · (∇u)T −m · (∇φ)T) = 0. (8.13)

Now the application to fracture (cf. §4) is straightforward. In quasi-statics, the pro-
jection of F(A) onto the direction E1 of possible extension of the crack yields the J
integral of the brittle-fracture mechanics of (materially homogeneous) polar elastic
media as

J(A) = F(A) ·E1 =
∫

Γ

(
Wn1 − n ·

(
t · ∂u
∂X

+m · ∂φ
∂X

))
dΓ , (8.14)

with W = W (e, γ), ∂/∂X = E1 ·∇, n1 = n ·E1, where n is the unit outward normal
to any circuit Γ that surrounds the tip A of the crack whose faces are totally free of
loads. The integral J in equation (8.14) is contour independent, just like its classical
elasticity analog due, among others, to Rice. This is due to the canonical expression
of the balance of pseudo-momentum. We may consider that an expression such as
(8.14) is essentially contained in the conservation law (5.6)—which does not con-
cern cracks—of Jaric (1978). However, equation (8.12) contains also the germ of the
generalization of this result to (i) dynamics, (ii) the thermoelasticity of conductors
and (iii) materially inhomogeneous polar elastic media. To do this we simply need
to follow the prescriptions given in previous works (e.g., respectively, in Dascalu &
Maugin 1993; Dascalu & Maugin 1995; Maugin 1995, pp. 228–229 for these three
cases). For example, for the dynamics of purely elastic polar solids, on account of
(8.13) simplified in the absence of true-inhomogeneity and thermal effects, we note
that the space integral of (8.13) over a regular material domain yields the conser-
vation law (5.8) of Vukobrat (1989), obtained by this author directly in the linear
framework, although we have here at our disposal the general proof in the nonlin-
ear framework and with both material inhomogeneities and thermal effects included.
The corresponding J integral of fracture will, therefore, include not only a surface
term (in two dimensions) which is transformed into a contour integral, but also a
bulk term (a surface integral for two-dimensional problems) involving the pseudo-
momentum. We shall not repeat for polar bodies the argument of Dascalu & Maugin
(1993) for it would directly lead from the integral of (8.13) over a material volume
about the crack to the J integral (6.1) of Vukobrat (1989, p. 1102) (note that in
the two-dimensional problem the only relevant component, φ3, of φ is in a direction
orthogonal to the plane) which is still contour-surface independent.

It is not salient to give the expressions of linear elasticity for phase-transition
fronts as it appears that the finite-strain framework is practically always required
and nobody seems to have given corresponding expressions by another means before.
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(A) (B) (C)

(D)

(E)

(F)

(P)

v · (A) Ẋ · (B)

ν · (F )

divR T = 0
inv. w.r.t. x

divR M + N = 0
inv. w.r.t. X

(F · T −X ·N +∇RX : M)skew = 0
inv. w.r.t. Q

(X ·B)skew = 0

divRM + F×•T = 0

∂W

∂t

∣∣∣∣
X

−∇R · (T · v + M : Ẋ) = 0

inv. w.r.t. t

divR b+ f inh = 0

inv. w.r.t. X

X · (P ) = 0

X×(P ) = 0

FT · (A) (∇RX)T · (B)

?

?
-

-

� �+

?

?

6

+- �

-

-

-

W = W (F ,X,∇rX;X), f inh = −
(
∂W

∂X

)
expl

T =

(
∂W

∂F

)T

, M =

(
∂W

∂∇RX

)T

, N = −
(
∂W

∂X

)T

b = W1R − T · F −M : ∇RX, M : Ẋ ≡M · ν

Figure 3. Flow chart of conservation laws for polar media.

9. Conclusion

The main aim of this lengthy contribution was to delineate the general structure
of the theory of polar elastic materials, especially in so far as canonical balance laws
and their applications are concerned. This is summarized in figure 3 which shows
a flow chart of the connections between these local balance laws. Essential applica-
tions are those to the theories of fracture and of the propagation of phase-transition
fronts, for which progress criteria constitute the relevant practical objectives. In this
line of thought there was no attempt at showing the completeness of the set of bal-
ance laws obtained. We preferred to put the emphasis on those laws which certainly
play the most important role in engineering applications despite their deep physi-
cal significance. It is believed that a state of generality has been reached that has
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certainly not been attained so far, including, in the finite-deformation framework,
the theory of material inhomogeneities and the effects of heat conduction . The lat-
ter are indeed essential in the correct formulation of the driving force that acts on
progressing coherent phase-transition fronts. This state of generality can only be
grasped because of the canonical structure of the chosen type of approach. In some
sense, the general results can be read off field theory. This is what simultaneously
provides a guarantee of the validity of the obtained results and an aesthetic pleasure
to which it is hard to resist. In pursuing this line, which does not necessarily bring
immediate rewards, it should be emphasized that in view of the recurrent interest
for a geometrical theory of defects—these will be both dislocations and disclinations
in the present context as the basic mechanical model certainly allows for them—the
next effort should be devoted to the possible geometrization of the canonical balance
laws of pseudo-momentum and moment of pseudo-momentum, equations (3.6) and
(3.12) in the quasi-static approximation. We remind the reader that this ambitious
programme—which is not without recalling Einstein’s successful ambition to incor-
porate some physical field source in the geometry of the underlying space—normally
consists in devising a geometry on the material manifold such that the material bal-
ance laws take a more compact form. Typically, one would like to incorporate the
effects of quasi-inhomogeneities (i.e. fields such as those related to density of defects
in interaction with the deformation field) in a certain covariant divergence of the
stress field (here the Eshelby stress) and possibly of the field of material hyperstress-
es (cf. equation (3.12)). This problem was solved by Epstein & Maugin (1990) in
the pure classical elasticity of continuously dislocated bodies. Promising attempts at
generalizing this for the elasticity of the second gradient were given by Elzanowski
et al. (1990) and de Leon & Epstein (1995). These rely on the general theory of
material uniformity put forth by these authors. The basic properties related to the
differential geometry of Cosserat continua, the object of the present contribution,
were examined by Epstein & de Leon (1994), while anelasticity is viewed as evolv-
ing quasi-inhomogeneities by Epstein & Maugin (1995). The endeavour presented
by this ‘geometrization’ of equations (3.6) and (3.12) has to be completed in the
near future. Its difficulty, however, is of the same level as that of the programme set
forth by Kröner & Maugin (1998) in anelastic solids in large deformation. It appears,
thus, that microstructure of the type met in (non-dissipative) polar elastic solids and
inelasticity of an otherwise classical elastic continuum yield difficulties and solutions
of the same order. In the precise case of polar media, the invariance properties orig-
inally established by Kafadar (Eringen & Kafadar 1976, pp. 18–20) will be essential
in such developments.
This research was carried within the framework of NATO CRG 950833 and the EC Research
Network ‘Phase transitions in crystalline substances’. It was completed while the author was a
member of the Institute for Mathematics and its Applications, University of Minnesota, Min-
neapolis, USA (November 1995). The financial help and friendly atmostphere of the Institute
are gratefully acknowledged.
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